Quadratic equations over small cancellation groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Burnside Groups and Small Cancellation Theory

In a pair of recent articles, the author develops a general version of small cancellation theory applicable in higher dimensions ([5]), and then applies this theory to the Burnside groups of sufficiently large exponent ([6]). More specifically, these articles prove that the free Burnside groups of exponent n ≥ 1260 are infinite groups which have a decidable word problem. The structure of the fi...

متن کامل

Nielsen Equivalence in Small Cancellation Groups

Let G be a group given by the presentation 〈a1, . . . , ak , b1, . . . bk | ai = ui(b̄), bi = vi(ā) for 1 ≤ i ≤ k〉, where k ≥ 2 and where the ui ∈ F (b1, . . . , bk) and wi ∈ F (a1, . . . , ak) are random words. Generically such a group is a small cancellation group and it is clear that (a1, . . . , ak) and (b1, . . . , bk) are generating n-tuples for G. We prove for generic choices of u1, . . ....

متن کامل

Free Subgroups of Small Cancellation Groups

with the property that for any pair r, s of elements of R either r = s or there is very little free cancellation in forming the product rs. The classical example of such a group is the fundamental group of a closed orientable 2-manifold of genus k. The study of this group has given rise both to the theory of one-relator groups, initiated by Magnus ([3]), and to the theory of small cancellation ...

متن کامل

Some Small Cancellation Properties of Random Groups

We work in the density model of random groups. We prove that they satisfy an isoperimetric inequality with sharp constant 1− 2d depending upon the density parameter d. This implies in particular a property generalizing the ordinary C ′ small cancellation condition, which could be termed “macroscopic cancellation”. This also sharpens the evaluation of the hyperbolicity constant δ. As a consequen...

متن کامل

Quadratic $alpha$-functional equations

In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1981

ISSN: 0021-8693

DOI: 10.1016/0021-8693(81)90137-x